Abstract

An analogue of elongation factor Tu (EF-Tu) from Escherichia coli was prepared by biosynthetic incorporation of 3-fluorotyrosine. The 19F-NMR spectra of the binary complexes of this protein with GDP, GTP and elongation factor Ts (EF-Ts) and the ternary complexes EF-Tu.GDP.aurodox and EF-Tu.GDP.EF-Ts were measured. EF-Tu contains ten tyrosine residues and all of the complexes studied gave complex 19F spectra with overlapping resonances. EF-Tu.GDP gave a spectrum in which two signals were markedly different from those shown by the other complexes, the two resonances being shifted downfield by at least 3.4 ppm and 0.9 ppm relative to their shifts in the other complexes. Such large downfield shifts can be explained by second-order electric field shielding effects resulting from these two tyrosine residues being in a sterically constrained environment in EF-Tu.GDP and with the steric restraints being released in all of the other complexes. The X-ray diffraction structure of EF-Tu.GDP shows that Tyr87 in the N-terminal domain (domain I) and Tyr309 in the C-terminal domain (domain III) are both buried within the protein and are close to each other: these residues are in regions of EF-Tu previously implicated in the structural changes between EF-Tu.GDP and EF-Tu.GTP by other workers. If these tyrosine residues correspond to the two downfield resonances of the spectra of EF-Tu.GDP, the results from the 19F-NMR would be consistent with these earlier indications that domain I interacts closely with domain III in EF-Tu.GDP and that the amino acids between Gly83 and Gly100 are an important part of this interaction. For all the other complexes studied, these tyrosines are in a less sterically crowded environment consistent with a weaker interaction between the two domains. The 19F-NMR spectrum of the trypsin-cleaved product of EF-Tu.GDP, from which the X-ray diffraction structural data have been obtained, shows no significant differences from the native protein so that trypsin cleavage causes no large changes in the protein's structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call