Abstract

Many fungal rhodopsins, eukaryotic structural homologues of the archaeal light-driven proton pump bacteriorhodopsin, have been discovered in the course of genome sequencing projects. Recently, two fungal rhodopsins were characterized in vitro and exhibited very different photochemical behavior. Neurospora rhodopsin possesses a slow photocycle and shows no ion transport, reminiscent of sensory rhodopsins, while Leptosphaeria rhodopsin has a fast bacteriorhodopsin-like photocycle and pumps protons light-dependently. Such a dramatic difference is surprising considering the very high degree of sequence homology of the two proteins. In this paper, we investigate whether the chemical structure of a cytoplasmic carboxylic acid, the homologue of Asp-96 of bacteriorhodopsin serving as a proton donor for the retinal Schiff base, can define the photochemical properties of fungal rhodopsins. We studied mutants of Leptosphaeria rhodopsin in which this aspartic acid was replaced with Glu or Asn using spectroscopy in the infrared and visible ranges. We show that Glu at this position is inefficient as a proton donor similar to a nonprotonatable Asn. Moreover, this replacement induces long-range structural perturbations of the retinal environment, as evidenced by changes in the vibrational bands of retinal (especially, hydrogen-out-of-plane modes) and neighboring aspartic acids and water molecules. The conformational coupling of the mutation site to the retinal may be mediated by helical rearrangements as suggested by the changes in amide and proline vibrational bands. We conclude that the difference in the photochemical behavior of fungal rhodopsins from Leptosphaeria and Neurospora may be ascribed, to some extent, to the replacement of the cytoplasmic proton donor Asp with Glu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.