Abstract

The KIX domain of CBP is a transcriptional coactivator. Concomitant binding to the activation domain of proto-oncogene protein c-Myb and the transactivation domain of the trithorax group protein mixed lineage leukemia (MLL) transcription factor lead to the biologically active ternary MLL∶KIX∶c-Myb complex which plays a role in Pol II-mediated transcription. The binding of the activation domain of MLL to KIX enhances c-Myb binding. Here we carried out molecular dynamics (MD) simulations for the MLL∶KIX∶c-Myb ternary complex, its binary components and KIX with the goal of providing a mechanistic explanation for the experimental observations. The dynamic behavior revealed that the MLL binding site is allosterically coupled to the c-Myb binding site. MLL binding redistributes the conformational ensemble of KIX, leading to higher populations of states which favor c-Myb binding. The key element in the allosteric communication pathways is the KIX loop, which acts as a control mechanism to enhance subsequent binding events. We tested this conclusion by in silico mutations of loop residues in the KIX∶MLL complex and by comparing wild type and mutant dynamics through MD simulations. The loop assumed MLL binding conformation similar to that observed in the KIX∶c-Myb state which disfavors the allosteric network. The coupling with c-Myb binding site faded, abolishing the positive cooperativity observed in the presence of MLL. Our major conclusion is that by eliciting a loop-mediated allosteric switch between the different states following the binding events, transcriptional activation can be regulated. The KIX system presents an example how nature makes use of conformational control in higher level regulation of transcriptional activity and thus cellular events.

Highlights

  • Allostery plays a crucial role in biological processes on the molecular and cellular levels [1,2,3]

  • Our major conclusion is that the L12 and G2 loop region plays a key role in the conformation control, acting as a switch: in the KIX-only structure it swings toward the mixed lineage leukemia (MLL)-favored position, preorganizing the MLL binding site

  • Clustering of the merged trajectories from the KIX, KIX:MLL, c-Myb:KIX and c-Myb:KIX:MLL simulations reveals that MLL binding redistributes the conformational ensemble of KIX and leads to a more stable ensemble and a higher percentage of population of the favored state, explaining the higher binding affinity of c-Myb to KIX:MLL compared to KIX only [12]

Read more

Summary

Introduction

Allostery plays a crucial role in biological processes on the molecular and cellular levels [1,2,3]. The formation of the ternary complex of the KIX domain of the CREB (cyclic-AMP responsive element binding protein) binding protein (CBP or CREBBP), the transactivation domain of the MLL, and the proto-oncogene protein c-Myb is cooperative. CBP binds to phosphorylated CREB, and is a modular coactivator of RNA polymerase II-mediated transcription [13,16,17]. It has several interacting domains which provide a scaffold for multiprotein assembly, including transcription factors, signaling molecules and hormone receptors [14,18,19,20]. The C-terminal region is linked to a second 310 helix

Author Summary
Conclusions
Findings
Materials and Methods
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.