Abstract

We assess the crucial role of tetrapyrrole flexibility in the CO ligation to distinct Ru‐porphyrins supported on an atomistically well‐defined Ag(111) substrate. Our systematic real‐space visualisation and manipulation experiments with scanning tunnelling microscopy directly probe the ligation, while bond‐resolving atomic force microscopy and X‐ray standing‐wave measurements characterise the geometry, X‐ray and ultraviolet photoelectron spectroscopy the electronic structure, and temperature‐programmed desorption the binding strength. Density‐functional‐theory calculations provide additional insight into the functional interface. We unambiguously demonstrate that the substituents regulate the interfacial conformational adaptability, either promoting or obstructing the uptake of axial CO adducts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call