Abstract

The aqueous solutions of polyethylene glycols with molecular masses of 600, 1000, 1500, 3000, 6000, and 20000 were studied by refractometry. The conformational polarizabilities, mean-square distances between the ends of the macromolecular chain, segment lengths, and the number of Kuhn segments in a macromolecule were determined using the Lorentz-Lorentz equation. The polarizability of a hydrated macro-molecule was represented as the sum of polarizabilities of the nonhydrated macromolecule with retained conformation and polarizabilities of the water molecules involved in hydration of macromolecules. The size of macromolecules stabilized starting from a certain concentration. It was concluded that the initial concentration of stabilization shifts toward low concentrations as the molecular mass of polyethylene glycol increases. The dependence of the mean-square distance between the ends of the macromolecular chain on the number of Kuhn segments was expressed as the exponential function with index 0.3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call