Abstract

Rabbit skeletal sarcoplasmic reticulum vesicles were loaded with Ca2+ by ATP-dependent Ca2+ accumulation in the presence of low [Mg2+] (0.2-0.5 mM), and Ca2+ release was induced by addition of caffeine or ADP or by means of a Ca2+ jump. The levels of the phosphorylated intermediate (EP) and the tryptophan fluorescence of the Ca2+-ATPase were monitored during both the Ca2+ accumulation and the induced Ca2+ release using fast kinetic techniques. During Ca2+ uptake, both the EP level and the tryptophan fluorescence gradually decreased following a time course similar to that of the Ca2+ accumulation. Upon inducing Ca2+ release by addition of either caffeine or ADP, there was a transient increase of the EP level (from 0.3-0.5 to 1-2 nmol/mg protein) preceding the release of Ca2+. Similarly, a transient increase of the tryptophan fluorescence prior to Ca2+ release produced by the application of a Ca2+ jump was also found. These results indicate that the Ca2+-ATPase enzyme undergoes a rapid conformational change in response to triggering of Ca2+ release.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call