Abstract

HIV-1 reverse transcriptase (RT) is translated as part of the Gag-Pol polyprotein that is proteolytically processed by HIV-1 protease (PR) to finally become a mature heterodimer, composed of a p66 and a p66-derived 51-kDa subunit, p51. Our previous work suggested that tRNALys3 binding to p66/p66 introduces conformational changes in the ribonuclease (RNH) domain of RT that facilitate efficient cleavage of p66 to p51 by PR. In this study, we characterized the conformational changes in the RNH domain of p66/p66 imparted by tRNALys3 using NMR. Moreover, the importance of tRNALys3 in RT maturation was confirmed in cellulo by modulating the levels of Lys-tRNA synthetase, which affects recruitment of tRNALys3 to the virus. We also employed nonnucleoside RT inhibitors, to modulate the p66 dimer-monomer equilibrium and monitor the resulting structural changes. Taken together, our data provide unique insights into the conformational changes in p66/p66 that drive PR cleavage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.