Abstract

BackgroundThe existence of conformational changes in antibodies upon binding has been previously established. However, existing analyses focus on individual cases and no quantitative study provides a more global view of potential moves and repacking, especially on recent data. The present study focuses on analyzing the conformational changes in various antibodies upon binding, providing quantitative observations to be exploited for antibody-related modeling. MethodsCartesian and dihedral Root-Mean-Squared Deviations were calculated for different subparts of 27 different antibodies, for which X-ray structures in the bound and unbound states are available. Elbow angle variations were also calculated. Previously reported results of four docking algorithms were condensed into one score giving overall docking success for each of 16 antibody-antigen cases. ResultsVery diverse movements are observed upon binding. While many loops stay very rigid, several others display side-chain repacking or backbone rearrangements, or both, at many different levels. Large conformational changes restricted to one or more antibody hypervariable loops were found to be a better indicator of docking difficulty than overall conformational variation at the antibody-antigen interface. However, the failure of docking algorithms on some almost-rigid cases shows that scoring is still a major bottleneck in docking pose prediction. ConclusionsThis study is aimed to help scientists working on antibody analysis and design by giving insights into the nature and the extent of conformational changes at different levels upon antigen binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.