Abstract

The Mn4CaO5 oxygen-evolving complex (OEC) in Photosystem II (PSII) is assembled in situ and catalyzes water oxidation. After OEC assembly, the PsbO extrinsic subunit docks to the lumenal face of PSII and both stabilizes the OEC and facilitates efficient proton transfer to the lumen. D1 residue R334 is part of a hydrogen bond network involved in proton release during catalysis and interacts directly with PsbO. D1-R334 has recently been observed in different conformations in apo- and holo-OEC PSII structures. We generated a D1-R334G point mutant in Synechocystis sp. PCC 6803 to better understand this residue's function. D1-R334G PSII is active under continuous light, but the OEC is unstable in darkness. Isolated D1-R334G core complexes have little bound PsbO and less manganese as the wild type control. The S2 intermediate is stabilized in D1-R334G indicating that the local environment around the OEC has been altered. These results suggest that the hydrogen bond network that includes D1-R334 exists in a different functional conformation during PSII biogenesis in the absence of PsbO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call