Abstract

Proteins are dynamic molecules and their ability to adopt alternative conformations is central to their biological function. The structural and biophysical properties of transiently and sparsely populated states are, however, difficult to study and an atomic-level description of those states is challenging. We have used enhanced-sampling all-atom, explicit-solvent molecular simulations, guided by structural information from X-ray crystallography and NMR, to describe quantitatively the transition between the major and a minor state of Cyclophilin A, thus providing new insight into how dynamics can affect enzyme function. We calculate the conformational free energy between the two states, and comparison with experiments demonstrates a surprisingly high accuracy for both the wild type protein and a mutant that traps the protein in its alternative conformation. Our results demonstrate how the combination of state-of-the-art force fields and enhanced sampling methods can provide a detailed and quantitative description of the conformational changes in proteins such as those observed in Cyclophilin A.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.