Abstract

Liquid-liquid phase separation is a phenomenon within biology whereby proteins can separate into dense and more dilute phases with distinct properties. Three antibodies that undergo liquid-liquid phase separation were characterized in the protein-rich and protein-poor phases. In comparison to the protein-poor phase, the protein-rich phase demonstrates more blue-shift tryptophan emissions and red-shifted amide I absorbances. Large changes involving conformational isomerization around disulfide bonds were observed using Raman spectroscopy. Amide I and protein fluorescence differences between the phases persisted to temperatures above the critical temperature but ceased at the temperature at which aggregation occurred. In addition, large changes occurred in the structural organization of water molecules within the protein-rich phase for all three antibodies. It is hypothesized that as the proteins have the same chemical potential in both phases, the protein viscosity is higher in the protein-rich phase resulting in slowed diffusion dependent protein aggregation in this phase. For all three antibodies we performed accelerated stability studies and found that the protein-rich phase aggregated at the same rate or slower than the protein-poor phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.