Abstract

We have found that the binding of NADP+ (Kd = 0.86+/-0.11 microM) enhanced the FAD fluorescence of Arabidopsis thaliana NADPH:thioredoxin reductase (TR, EC 1.6.4.5) by 2 times, whereas the binding of 3-aminopyridine adenine dinucleotide phosphate (AADP+) (Kd < 0.1 microM) quenched the fluorescence by 20%. Thioredoxin (TRX) also enhanced the FAD fluorescence by 35%. The Kd of TR-NADP+ and TR-AADP+ complexes did not change in the presence of 45 microM TRX. Our findings imply that the binding of NADP+ and AADP+ at the NADP(H)-binding site of A. thaliana TR, and/or the binding of TRX in the vicinity of the catalytic disulfide increase the content of fluorescent FR conformer (NADP(H)-binding site adjacent to flavin). The different effects of NADP+ and AADP+ on FAD fluorescence intensity may be explained by the superposition of two opposite factors: i) increased content of fluorescent FR conformer upon binding of NADP+ or AADP+; ii) quenching of FAD fluorescence by electron-donating 3-aminopyridinium ring of AADP+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call