Abstract

AbstractEquilibrium ring opening metathesis polymerization of low strained cycloolefins is opportunistic for the development of novel materials capable of chemical recycling to monomer (CRM). However, many of the potential materials for CRM contain complex side chains complicating predictions of their ring strain energies (RSE). The effects of different conformational considerations on RSE predictions using density functional theory (DFT) are explored. New homodesmotic equations are investigated to capture changes in olefin conformation upon polymerization. The employment ofcis‐2‐butene as a corrective factor with a 2,7‐nonadiene linear analog bearing onecisand onetransolefin (H2cis) resulted in RSEs similar to previously reported ΔHpvalues. Different consideration of possible conformers aside from their lowest energy counterparts leads to a range of predicted RSE values. Similarly, the application of a Boltzmann distribution resulted in negligible differences in RSE. Therefore, RSE predictions using the lowest energy structures with H2ciscalculated at B3LYP/6‐31+G* in toluene is a sufficient approach for predicting RSE of monomers with multiple conformers. This method can be used to screen a monomer's potential for CRM to reduce the time, cost, waste, and effort necessary to research new materials towards a more circular polymer economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call