Abstract
Hyaluronan (HA) is a linear charged polysaccharide whose structure is made up of repeating disaccharide units. Apparently conflicting reports have been published about the nature of the helical structure of HA in the solid state. Recent developments in the field of molecular modeling of polysaccharides offer new opportunities to reexamine the structural basis underlying the formation and stabilization of ordered structures and their interactions with counterions. The conformational spaces available and the low energy conformations for the disaccharide, trisaccharide, and tetrasaccharide segments of HA were investigated via molecular mechanics calculations using the MM3 force field. First, the results were used to access the configurational statistics of the corresponding polysaccharide. A disordered chain having a persistence length of 75 A at 25 degrees C is predicted. Then, the exploration of the stable ordered forms of HA led to numerous helical conformations, both left- and right-handed, having comparable energies. Several of these conformations correspond to the experimentally observed ones and illustrate the versatility of the polysaccharide. The double stranded helical forms have also been explored and theoretical structures have been compared to experimentally derived ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.