Abstract

The conformational behavior of an isolated semiflexible dipolar chain has been studied by molecular dynamics simulations. The dipolar chain was modeled as a backbone chain of charged beads, each containing an oppositely charged unit connected to it by a rigid spring. The main focus was on the effect of the backbone chain rigidity and the size of the charged groups on the morphology of the collapsed states of the chain formed in low-polar media where the electrostatic interactions are essential. It has been found that the stable globular conformations of the long chain of N = 256 backbone beads are a toroid and an elliptical globule. The macroscopic parameters (such as the radius of gyration and shape factors) as well as the local characteristics of these conformations (radial density distributions of ions, orientational correlations of chain segments, dipoles etc.) are studied depending on the chain stiffness. The regions of stability of a torus and an elliptical globule are found for the dipolar chains with variable dipole length and stiffness, which depend on the strength of electrostatic interactions. It has been shown that a size asymmetry of oppositely charged beads destabilizes globular states favoring elongated chain conformations. A coexistence of various metastable states was demonstrated for shorter chains of N = 128, 64, and 32.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.