Abstract

In vitro oxidative folding of reduced recombinant human macrophage colony stimulating factor beta (rhm-CSFbeta) involves two major events: disulfide isomerization in the monomeric intermediates and disulfide-mediated dimerization. Kinetic analysis of rhm-CSFbeta folding indicated that monomer isomerization is slower than dimerization and is, in fact, the rate-determining step. A time-dependent determination of the number of free cysteines remaining was made after refolding commence. The folding intermediates revealed that rhm-CSFbeta folds systematically, forming disulfide bonds via multiple pathways. Mass spectrometric evidence indicates that native as well as non-native intrasubunit disulfide bonds form in monomeric intermediates. Initial dimerization is assumed to involve formation of disulfide bonds, Cys 157/159-Cys' 157/159. Among six intrasubunit disulfide bonds, Cys 48-Cys 139 and Cys' 48-Cys' 139 are assumed to be the last to form, while Cys 31-Cys' 31 is the last intersubunit disulfide bond that forms. Conformational properties of the folding intermediates were probed by H/D exchange pulsed labeling, which showed the coexistence of noncompact dimeric and monomeric species at early stages of folding. As renaturation progresses, the noncompact dimer undergoes significant structural rearrangement, forming a native-like dimer while the monomer maintains a noncompact conformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.