Abstract

We present a new approach to the analysis of the conformational and the motional properties of an oligosaccharide, methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside. The approach relies on an order matrix analysis of residual dipolar couplings in the solution state. By combining a number of different types of couplings, (1)D(CH), (2)D(CH), and D(HH), an order matrix is solved for each ring of the trimannoside. The resulting order parameters indicate the internal motion at the alpha (1,3) linkage to be limited, while significant motion is suggested at the alpha (1,6) linkage. Two structures for the trimannoside were determined by aligning the order tensor principal axes obtained from two different orienting media, bicelles and phage. The very similar conformations at the alpha (1,3) linkage of these two structures confirm that the internal motion at the alpha (1,3) linkage is small and the conformation is a good representation of a single preferred structure. The different conformations at the alpha (1,6) linkage suggest that the motional amplitudes are large and the conformations must be viewed as virtual conformers. Compared with traditional NMR methods, data acquisition is easy and data analysis is straightforward.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.