Abstract

The rotational freedom of the carbon-carbon single bonds of 1,2-disubstituted ethanes affords the possibility of these compounds existing as a rapidly interconverting mixture of conformers in solution. The conformational preferences of one such compound, 3-(trimethylsilyl)propionic acid, and its anion were studied in water, dimethyl sulfoxide, methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, tetrahydrofuran, and toluene with 1H NMR spectroscopy. The conformational preferences were determined from the vicinal proton-proton coupling constants between the hydrogen nuclei of the CH(2)CH(2) group with the aid of the Altona equations to derive the equilibrium anti and gauche percentages of rotamers from the averaged NMR-time scale couplings. Conformational analyses of 4,4-dimethylpentanoic acid and its anion as well as 2-(trimethylsilyl)ethanesulfonate anion were also conducted to compare the relative structural influences on the conformational preferences of silicon and carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.