Abstract
In this study conformational behavior of anticancer chemotherapy dipeptide Ala-Gln and its dimers have been investigated by molecular mechanic and ab-initio calculations. The calculations on Ala-Gln dipeptide as a function of side chain torsion angles, enable us to determine their energetically preferred conformations. The relative positions of the side chain residues of the stable conformations of dipeptide were obtained, depending on the obtained conformational analysis results. The lowest energy conformation of the dipeptide has been determined by using the Ramachandran maps (Biopolymers 6 (1963), 1494; J. Mol. Biol.7 (1963), 95) and compared with the quantum chemical ab-initio results. The geometry optimization, vibrational wavenumbers and intensity calculations of Ala-Gln dipeptide were carried out with the Gaussian03 program by using DFT with B3LYP functional and 6-31
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.