Abstract
The study investigates conformational analysis and the in vitro cytokine-mediated immunomodulatory and insulin-releasing activities of rhinophrynin-27 (ELRLPEIARPVPEVLPARLPLPALPRN; RP-27), a proline-arginine-rich peptide first isolated from skin secretions of the Mexican burrowing toad Rhinophrynus dorsalis (Rhinophrynidae). In both water and 50% trifluoroethanol-water, the peptide adopts a polyproline type II helical conformation with a high degree of deviation from the canonical collagen-like folding and a pronounced bend in the molecule at the Glu13 residue. Incubation of mouse peritoneal cells with RP-27 significantly (P < 0.05) inhibited production of the pro-inflammatory cytokines TNF-α and IL-1β and stimulated production of the anti-inflammatory cytokine IL-10. The peptide significantly (P < 0.01) stimulated release of insulin from BRIN-BD11 rat clonal β-cells at concentrations ≥ 1 nM while maintaining the integrity of the plasma membrane and also stimulated insulin release from isolated mouse islets at a concentration of 10−6 M. Increasing the cationicity of RP-27 by substituting glutamic acid residues in the peptide by arginine and increasing hydrophobicity by substituting alanine residues by tryptophan did not result in analogues with increased activity with respect to cytokine production and insulin release. The combination of immunosuppressive and insulinotropic activities together with very low cytotoxicity suggests that RP-27 may represent a template for the development of an agent for use in anti-inflammatory and Type 2 diabetes therapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.