Abstract
The 1H and 13C NMR spectra of the cardenolide ouabain and its aglycon ouabagenin have been completely assigned by two-dimensional NMR techniques, including phase-sensitive COSY and carbon–proton correlation (HETCOR, HMQC, and COLOC) spectra. The major conformer of these two compounds in solution is all-chair as determined from proton–proton coupling constants and is similar to that in the crystal lattice as previously determined by X-ray diffraction. The conformations of the A and D rings of ouabain in water are somewhat different than in DMSO/CDCl3 (2:1). At lower temperatures (−20 °C) signals from two conformers in slow exchange were readily observed in the 13C spectra, with an approximate ratio of 1:7. Molecular mechanics and dynamics calculations indicate that the conformational process responsible for this involves a chair/twist-boat interconversion of the A ring, with the all-chair conformer highly preferred. Keywords: ouabain, conformational analysis, 2-D NMR, molecular mechanics, molecular dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.