Abstract

Disease-related amyloid fibrils appear to share a common, but poorly understood, structure. We describe here the generation and preliminary characterization of two conformation-specific mAbs, WO1 and WO2, that bind to the amyloid fibril state of the Alzheimer's peptide A beta(1-40) but not to its soluble, monomeric state. Surprisingly, these Abs also bind to other disease-related amyloid fibrils and amyloid-like aggregates derived from other proteins of unrelated sequence, such as transthyretin, islet amyloid polypeptide, beta(2)-microglobulin, and polyglutamine. At the same time, WO1 and WO2 do not bind to the native protein precursors of these amyloids, nor do they bind to other kinds of protein aggregates. This new class of Abs associated with a fundamental amyloid-folding motif appear to recognize a common conformational epitope with little apparent dependence on amino acid side chain information. These Abs should contribute to the understanding of amyloid structure, assembly, and toxicity and also may benefit the development of diagnostic and therapeutic agents for amyloid diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.