Abstract

AbstractSolutions of calf thymus NaDNA in 0.2M NaCl and CsDNA in 0.2M CsCl (fragmented by sonic irradiation to a molecular weight of about 5 × 105) were examined by electron microscopy, light scattering, and viscosity measurements. Electron microscopy showed that the molecular fragments are rodlike in shape and that the distribution of their lengths is sharp (Lw/Ln ∼ 1.06). The weight‐average number of nucleotides Zw per DNA molecule derived from light scattering was found to be in very good agreement with the value Lw derived from electron microscopy. The z‐average length Lz derived from light scattering at 25°C. was found to be about 89% of the corresponding value derived by electron microscopy. Similarly, the value of Lw derived from intrinsic viscosity at 25°C. on the basis of a rodlike model was found to be about 87% of the corresponding value derived by electron microscopy. It is concluded that the molecules are slightly flexible and do not, assume their full contour length in solution because of the disorienting effect of Brownian motion. The intrinsie viscosity was found to increase linearly with decreasing temperature toward a limiting value corresponding to the fully stretched length of the macromolecules at 0°K.: a reasonable value for the modulus of elasticity could be calculated. It was also found that, no differences in conformation could be delected in t he two systems CsDNA‐0.2M CsCl and NaDNA‐0.2M NaCl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.