Abstract

The conformation of the glucotriose unit of the protein glycosylation precursor Glc3Man9GlcNAc2 was assessed by deuterium exchange studies on the model tetrasaccharide alpha Glc----2 alpha Glc----3 alpha Glc----3 alpha Man----OCH2CH2CH3 dissolved in deuterated dimethyl sulfoxide. The hydroxyl proton on C-2 of the nonreducing end glucose and on C-4 of the glucose attached to mannose both show dramatic isotope shifts indicative of a strong hydrogen bond between these two hydroxyl groups. Such a hydrogen bond requires a fixed conformation of the glucotriose unit that brings these hydroxyl groups within 3 A of each other, a conformation that is supported by molecular modeling based on hard-sphere exo-anomeric (HSEA) calculations. The temperature dependence of the hydroxyl proton chemical shifts supports the postulated hydrogen bond, and the torsional angles between the three glucose units derived from the HSEA calculations are consistent with results from related studies on other saccharides. The results support a model for biochemical function in which the glucotriose unit could modulate the activity of the oligosaccharyltransferase by binding in a fixed conformation to a specific effector site in the enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.