Abstract

The three-dimensional organization of the genome supports regulated gene expression, recombination, DNA repair, and chromosome segregation during mitosis. Chromosome conformation capture (Hi-C)1,2 has revealed a complex genomic landscape of internal chromosome structures in vertebrate cells3–7 yet how sister chromatids topologically interact in replicated chromosomes has remained elusive due to their identical sequences. Here, we present sister-chromatid-sensitive Hi-C (scsHi-C) based on nascent DNA labeling with 4-thio-thymidine and nucleoside conversion chemistry. Genome-wide conformation maps of human chromosomes revealed that sister chromatid pairs interact most frequently at the boundaries of topologically associating domains (TADs). Continuous loading of a dynamic cohesin pool separates sister-chromatid pairs inside TADs and is required to focus sister chromatid contacts at TAD boundaries. We identified a subset of TADs that are overall highly paired, characterized by facultative heterochromatin, as well as insulated topological domains that form separately within individual sister chromatids. The rich pattern of sister chromatid topologies and our scsHi-C technology will make it possible to dissect how physical interactions between identical DNA molecules contribute to DNA repair, gene expression, chromosome segregation, and potentially other biological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.