Abstract
Conformational studies were performed on a synthetic pentacosapeptide representing the RNA-binding N-terminal region of the coat protein of cowpea chlorotic mottle virus. Two-dimensional proton NMR experiments were performed on the highly positively charged peptide containing six arginines and three lysines in the presence of an excess of monophosphates, tetra(poly)phosphates, or octadeca(poly)phosphates mimicking the phosphates of the RNA. The results show that the peptide alternates between various extended and helical structures in the presence of monophosphate and that this equilibrium shifts toward the helical structures (with the helical region situated between residues 10 and 20) in the presence of oligophosphates. Distance geometry calculations using distance constraints derived from a NOESY spectrum of the peptide in the presence of tetra(poly)phosphate resulted in eight structures belonging to two structure families. The first family consists of five structures with an alpha-helixlike conformation in the middle of the peptide, and the second family consists of three structures with a more open conformation. The propensity to form an alpha-helical conformation in the N-terminal part of this viral coat protein upon binding of phosphate groups to the positively charged side chains is suggested to play an essential role in RNA binding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.