Abstract

Hg(2+) is known to bind very strongly with T-T mismatches in DNA duplexes to form T-Hg(2+)-T base pairs, the structure of which is stabilized by covalent N-Hg bonds and exhibits bonding strength higher than hydrogen bonds. In this work, we exploit exonuclease III (Exo III) activity on DNA hybrids containing T-Hg(2+)-T base pairs and our experiments show that Hg(2+) ions could intentionally trigger the activity of Exo III toward a designed thymine-rich DNA oligonucleotide (e-T-rich probe) by the conformational change of the probe. Our sensing strategy utilizes this conformation-dependent activity of Exo III, which is controlled through the cyclical shuffling of Hg(2+) ions between the solution phase and the solid DNA hybrid. This interesting attribute has led to the development of an ultrasensitive detection platform for Hg(2+) ions with a detection limit of 0.2 nM and a total assay time within minutes. This simple detection strategy could be used for the detection of other metal ions which exhibit specific interactions with natural or synthetic bases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.