Abstract

We report that repeated thermal perturbation by thermal cycling (TC) accelerates the formation rate of amyloid filaments at microliter volumes (10-200 μL) and produces a new conformation of zigzag-shaped filaments. The amyloid filaments have been synthesized under different TC conditions, such as temperature variations (ΔT = 0-86 °C) and the number of cycles (C# = 30-90). In particular, the filament formation was promoted by TC with ΔT ≥ 30 °C. This indicates that the change in binding energy of β-sheets and the breakage of disulfide bonds induced by TC with large ΔT contributed to the increased filament growth. This molecular interaction was investigated by molecular dynamics simulation. We also found that TC leads to the formation of amyloid filaments with peculiar conformation (zigzag-shaped filaments). Moreover, key structural parameters (tortuosity, segment length, and joint angle) of the amyloid filaments could be fine-tuned by selecting certain ΔT conditions. Taken together, we confirmed that the TC not only promotes the formation of amyloid filaments but also affects the conformational changes of the filaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.