Abstract

Reaction of polymeric gold(I) acetylide species (bpyC[triple bond]CAu)n (bpyC[triple bond]CH = 5-ethynyl-2,2'-bipyridine) with diphosphine ligands Ph2P(CH2)nPPh2 (n = 2-6) or 1,1'-bis(diphenylphosphino)-ferrocene (dppf) in dichloromethane induces isolation of binuclear gold(I) complexes (bpyC[triple bond]CAu)2{mu-Ph2P(CH2)nPPh2} or (bpyC[triple bond]CAu)2(mu-dppf). Complexation of Ln(hfac)3 (hfac = hexafluoroacetylacetonate, Ln = Nd, Eu, Er, Yb) subunits to the binuclear gold(I) complexes through 2,2'-bipyridyl chelation gives the corresponding Au4Ln4 or Au2Ln2 heteropolynuclear complexes. Noticeably, upon formation of the Au4Ln4 arrays by complexation of (bpyC[triple bond]CAu)2(mu-Ph2P(CH2)4PPh2) (3) with Ln(hfac)3 units, trans-conformation in 3 transforms dramatically to the cis-arranged form due to the strong driving force from ligand-unsupported Au-Au contacts between two Au2Ln2 subunits. In contrast, cis-conformation in (bpyC[triple bond]CAu)2(mu-dppf) (6) stabilized by Au-Au interactions is reversed to the trans-oriented form upon formation of Au2Ln2 arrays by introducing Ln(hfac)3 units through 2,2-bipyridyl chelation. The binuclear gold(I) complexes show bright blue luminescence featured by ligand-centered pi --> pi* (C[triple bond]Cbpy) states together with low-energy emission at 500-540 nm, associated with 3(pi-->pi*) excited states, mixed probably with some characteristic from (Au-Au) --> (C[triple bond]Cbpy) 3MMLCT transition. For Au4Ln4 or Au2Ln2 complexes, sensitized lanthanide luminescence is achieved by energy transfer from Au-acetylide chromophores with lifetimes in the sub-millisecond range for EuIII complexes, whereas in the microsecond range for near-infrared emitting NdIII, ErIII, and YbIII species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call