Abstract
The adsorption of proteins at biomaterial surfaces depends on the properties of the substrate and can cause changes in protein conformation. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) was used in this study to characterize human serum albumin (HSA) adsorption on two different polycarbonate surfaces: a native membrane and a hydrophilic treated one. The amount adsorbed as a function of HSA concentration in solution was compared for the two substrates. The treated membrane was found to have a lower affinity for albumin than the native one. Principal component analysis was used to reveal changes in albumin conformation as a function of albumin concentration in solution and to compare the conformations adopted on the two substrates. The albumin conformation was different on the two substrates, and in every case, the protein lost its native structure. A correlation was found between the amount adsorbed on the hydrophilic surface and the albumin conformation on this surface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.