Abstract
The binding of vitamin C, L-ascorbic acid (AsA), with human serum albumin (HSA) was investigated by various spectroscopic techniques under simulated physiological conditions. The fluorescence quenching constants (K SV) at four different temperatures (292, 298, 304, and 310 K) were obtained. The thermodynamic parameters ΔH ∘ and ΔS ∘ were calculated to be 6.02 kJ⋅mol−1 and 84.55 J⋅mol−1⋅K−1 using the van’t Hoff equation. Additional experiments to determine the stoichiometry (n) were carried out using isothermal titration calorimetry (ITC) and cyclic voltammetry (CV). The distance, r, between AsA and the tryptophan residues of HSA was calculated to be 3.7 nm according to Forster’s non-radiation energy transfer theory. The effect of AsA on the conformation of HSA was studied by means of three dimensional fluorescence spectra and CD spectra. The results indicate that the presence of AsA resulted in a slight change of the HSA secondary structure. The effect of common ions on the binding of AsA to HSA was also examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.