Abstract

Calcium plays a key role in cellular signal transduction. Calmodulin, a protein binding four calcium ions, is found in all eukaryotic cells and is believed to activate such processes. The calcium binding loop found in this protein, the canonical EF-hand, is also found in a large number of other proteins such as troponins, parvalbumins, calbindins etc. Earlier analysis of the amino acid sequences of these proteins with a view of understanding evolution of protein families and signaling mechanisms have provided extensive evidence for a characteristic double gene duplication event in this family of proteins. These analyses have been extended here to the three dimensional structures and the biophysical properties of the sequence segments of calmodulin EF-hands. The clear evolutionary history that shows up in sequences is not reflected as clearly in the conformation of individual EF-hands, which may be a consequence of the much higher conservation pressure on the structure. Some evidence for the proposed gene duplication is implicit in the apo-holo structural transitions of the EF- hands. The profile of amino acid properties that might be significant for calcium binding, however, clearly reflects the gene duplication. These profiles might also provide insightful information on the calcium affinity of the EF-hand motifs and the nature of amino acid residues that constitute them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.