Abstract

Solution properties of beta recombinase were studied by circular dichroism and fluorescence spectroscopy, size exclusion chromatography, analytical ultracentrifugation, denaturant-induced unfolding and thermal unfolding experiments. In high ionic strength buffer (1 M NaCl) beta recombinase forms mainly dimers, and strongly tends to aggregate at ionic strength lower than 0.3 M NaCl. Urea and guanidinium chloride denaturants unfold beta recombinase in a two-step process. The unfolding curves have bends at approximately 5 M and 2.2 M in urea and guanidinium chloride-containing buffers. Assuming a three-state unfolding model (N2-->2I-->2U), the total free energy change from 1 mol of native dimers to 2 mol of unfolded monomers amounts to deltaG(tot) = 17.9 kcal/mol, with deltaG(N2-->2I) = 4.2 kcal/mol for the first transition and deltaG(I-->U) = 6.9 kcal/mol for the second transition. Using sedimentation-equilibrium analytical ultracentrifugation, the presence of beta recombinase monomers was indicated at 5 M urea, and the urea dependence of the circular dichroism at 222 nm strongly suggests that folded monomers represent the unfolding intermediate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.