Abstract

We studied the influence of salts on the pH-dependent conformational equilibria between the active and the inactive photoproduct states of rhodopsin, Meta II and Meta I, respectively, and between the active and inactive conformations of the apoprotein opsin. In both equilibria, the active species is favored in the presence of medium to high concentration of salt. The ion selectivity for the Meta I/Meta II equilibrium is particularly pronounced for the anions and follows the series trichloroacetate > thiocyanate > iodide > bromide > sulfate > chloride > acetate. The Hill coefficient of this salt-induced transition is close to 2.0. Both ion selectivity and Hill coefficient suggest that the transition is mainly regulated by ion binding to two specific charged binding sites in the protein with smaller contributions being due to the Hofmeister effect. We propose that these putative ion binding sites are identical to those sites that are titrated in the corresponding pH-dependent conformational transition. They presumably function as ionic locks, which keep the receptor in an inactive conformation, and which may be disrupted either by pH-dependent protonation or by salt-dependent ion binding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.