Abstract

There is significant interest in the development of antimicrobial compounds to overcome the increasing bacterial resistance to conventional antibiotics. Studies have shown that naturally occurring and de novo-designed antimicrobial peptides could be promising candidates. MSI-594 is a synthetic linear, cationic peptide that has been reported to exhibit a broad spectrum of antimicrobial activities. Investigation into how MSI-594 disrupts the cell membrane is important for better understanding the details of this antimicrobial peptide (AMP)'s action against bacterial cells. In this study, we used two different synthetic lipid bilayers: zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and anionic 7:3 POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (POPG). Sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to determine the orientations of MSI-594 and its analogue MSI-594A associated with zwitterionic POPC and anionic 7:3 POPC/POPG lipid bilayers. The simulated ATR-FTIR and SFG spectra using nuclear magnetic resonance (NMR)-determined structures were compared with experimental spectra to optimize the bent angle between the N- (1-11) and C- (12-24) termini helices and the membrane orientations of the helices; since the NMR structure of the peptide was determined from lipopolysaccharide (LPS) micelles, the optimization was needed to find the most suitable conformation and orientation in lipid bilayers. The reported experimental results indicate that the optimized MSI-594 helical hairpin structure adopts a complete lipid bilayer surface-bound orientation (denoted "face-on") in both POPC and 7:3 POPC/POPG lipid bilayers. The analogue peptide, MSI-584A, on the other hand, exhibited a larger bent angle between the N- (1-11) and C- (12-24) termini helices with the hydrophobic C-terminal helix inserted into the hydrophobic region of the bilayer (denoted "membrane-inserted") when interacting with both POPC and 7:3 POPC/POPG lipid bilayers. These experimental findings on the membrane orientations suggest that both peptides are likely to disrupt the cell membrane through the carpet mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call