Abstract

ABSTRACT Actin is present in the cytoplasm of the vegetative cell of angiosperm pollens in numerous fusiform, spiculate or toroidal bodies, and also as a sheath enveloping the vegetative nucleus. During activation following hydration, the compact cytoplasmic bodies are translated into skeins of extended fibrils, and circulatory movements begin in the cytoplasm. Throughout this period the vegetative nucleus, with fibrillar actin now associated with the surface, undergoes a continuous change of shape. In the extending tube following germination the actin cytoskeleton consists of numerous mainly longitudinally oriented fibrils. After entry into the tube the vegetative nucleus remains associated with the fibrils, usually extending greatly in length and developing attenuated, often pointed extensions. The observed conformations, which change continuously, suggest that varying local tensions are applied to the vegetative nucleus during passage through the tube. Cytochalasin D breaks up the actin fibril system and brings about a rapid contraction of the nucleus, at the same time eliminating the elastic extensions of the nuclear envelope. Nuclei isolated physically from unfixed tubes also contract in length as the fibrillar components of the cytoskeleton are detached. These findings indicate that the movement of the vegetative nucleus depends on local associations of the nuclear envelope with the actin cytoskeleton of the vegetative cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.