Abstract
The relative stereochemistry of C2 and C4 in 4-substituted prolyl polypeptides plays an important role in defining the derived conformation in solution. cis-(2S,4S)-Amino/hydroxy-l-prolyl polypeptide (lC-Amp9/lC-Hyp9) shows a PPII conformation in phosphate buffer and a β-structure in a relatively hydrophobic solvent, trifluoroethanol (TFE). It is now demonstrated that the homochiral enantiomeric cis-substituted d-prolyl polypeptide (dC-Amp9/dC-Hyp9) exhibits mirror image β-structures in TFE. In the case of alternating heterochiral prolyl peptides, it is the trans-substituted [lT(2S,4R)-dT(2R,4S)]n prolyl polypeptide that shows β-structures in TFE, while the cis-substituted [lC(2S,4S)-dC(2R,4R)]n prolyl polypeptide is disordered in both phosphate buffer and TFE. The results highlight the important chirality-specific structural requirements for β-structure formation. The observed conformation in solution (circular dichroism (CD)) is also correlated with the morphology of the self-assemblies (field emission scanning electron microscopy (FESEM)), with the PPII form leading to spherical nanoparticles and β-structures leading to nanofiber formation. The results shed light on the role of relative stereochemistry at C2 and C4 in defining the polyproline peptide conformation in solution and how different conformations drive self-assemblies of peptides toward specific nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.