Abstract

In this work, linear infrared (IR) spectroscopy and molecular dynamics (MD) simulations were used to examine the interaction of different metal cations (Na+, Ca2+, Mg2+, and Zn2+) with backbone (amide C═O) and C-terminal carboxylate (COO-) groups in zwitterionic alanine tripeptide (Ala3) in aqueous solutions with varying saline concentrations. Circular dichroism spectra and MD results suggest that Ala3 is predominantly in polyproline-II (PPII) conformation, whose amide-I and asymmetric carboxylate stretching IR vibration signatures are also supported by quantum-chemistry calculations. The zwitterionic form of Ala3 separates the two amide-I modes in frequency, which are weakly coupled modes, as revealed by two-dimensional IR measurement, and can be used to probe backbone-cation interactions at different scenarios (near charged or neutral chemical groups respectively). Cation concentration-dependent IR frequency red shifts in the amide-I mode are seen for both amide-I modes, whereas blue shifts are also seen in the amide-I mode far from the NH3+ group. The observed spectral changes are discussed from the perspective of the salting-in and salting-out abilities of the cations. In addition, all the metal cations studied here (except Zn2+) can specifically coordinate to the COO- group in bidentate and pseudo-bridging forms simultaneously. For Zn2+, only the pseudo-bridging form exists. Our results shed light on the macroscopic protein salting-in and salting-out phenomena from the perspective of key chemical bonds in peptides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.