Abstract

AbstractThe conformation of melittin, a surface‐active polypeptide, in solution was studied by CD spectra between 190 and 240 nm. The molecule was essentially unordered (possibly with a trace of helix) in water without salt at neutral pH. Upon deprotonation of four of the six cationic groups at pH 12 the polypeptide became partially helical (about 35%). The addition of NaDodSO4 to an aqueous melittin solution first caused the solution to become turbid but it became clear again in excess surfactant solution. The conformational changes depended on the molar NaDodSO4/melittin ratio, R. With R from 2.34 to 23.4, the melittin solution was turbid and the polypeptide conformation was probably a mixture of α‐helix and β‐sheets. This was supported by the ir spectrum of the turbid solution, which indicated the presence of both conformations. With R = 46.8 or 468 (1 or 10 mM NaDodSO4) the polypeptide conformation was characteristic of an α‐helix, about 70–80% of the molecule, regardless of whether the surfactant was above or below its critical micelle concentration. This compared well with the x‐ray results of 92% helix in crystals. The lower helicity of melittin in NaDodSO4 solution might be attributed to the end effects that destabilize the first and last turn of an helix at its N‐ and C‐terminus, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.