Abstract

The modulus metric between two points in a subdomain of Rn,n≥2,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {R}^n, n\\ge 2,$$\\end{document} is defined in terms of moduli of curve families joining the boundary of the domain with a continuum connecting the two points. This metric is one of the conformally invariant hyperbolic-type metrics that have become a standard tool in geometric function theory. We prove that the modulus metric is not Hölder continuous with respect to the hyperbolic metric.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.