Abstract

Conformal artificial electromagnetic media that feature tailorable responses as a function of incidence wavelength and angle represent universal components for optical engineering. Conformal grayscale metamaterials are introduced as a new class of volumetric electromagnetic media capable of supporting highly multiplexed responses and arbitrary, curvilinear form factors. Subwavelength-scale voxels based on irregular shapes are designed to accommodate a continuum of dielectric values, enabling the freeform design process to reliably converge to exceptionally high figures of merit (FOMs) for a given multi-objective design problem. Through additive manufacturing of ceramic-polymer composites, microwave metamaterials, designed for the radio-frequency range of 8-12GHz, are experimentally fabricated and devices with extreme dispersion profiles, an airfoil-shaped beam-steering device, and a broadband, broad-angle conformal carpet cloak, are demonstrated. It is anticipated that conformal volumetric metamaterials will lead to new classes of compact and multifunctional imaging, sensing, and communications systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call