Abstract
Abstract In this paper, the authors propose a new dimension reduction method for level-set-based topology optimization of conforming thermal structures on free-form surfaces. Both the Hamilton-Jacobi equation and the Laplace equation, which are the two governing PDEs for boundary evolution and thermal conduction, are transformed from the 3D manifold to the 2D rectangular domain using conformal parameterization. The new method can significantly simplify the computation of topology optimization on a manifold without loss of accuracy. This is achieved due to the fact that the covariant derivatives on the manifold can be represented by the Euclidean gradient operators multiplied by a scalar with the conformal mapping. The original governing equations defined on the 3D manifold can now be properly modified and solved on a 2D domain. The objective function, constraint, and velocity field are also equivalently computed with the FEA on the 2D parameter domain with the properly modified form. In this sense, we are solving a 3D topology optimization problem equivalently on the 2D parameter domain. This reduction in dimension can greatly reduce the computing cost and complexity of the algorithm. The proposed concept is proved through two examples of heat conduction on manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.