Abstract
We show that in odd spacetime dimensions greater than 4, all components of the unphysical Weyl tensor for arbitrary smooth, compact spatial support solutions of the linearized vacuum Einstein equation off of Minkowski spacetime fail to be smooth at null infinity at leading nonvanishing order. This implies that for nearly flat radiating spacetimes, the non-smoothness of the unphysical metric at null infinity manifests itself at the same order as it describes deviations from flatness of the physical metric. Therefore, in odd spacetime dimensions, it does not appear that conformal null infinity can be in any way useful for describing radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.