Abstract
Allogeneic transplantation of hematopoietic stem cells (HSC) in combination with T cells has a curative potential for hematopoietic malignancies through graft-versus-leukemia (GVL) effects, but is often compromised by the notorious side effect of graft-versus-host disease (GVHD) resulting from alloreactivity of the donor T cells. Here, we tested if temporary immunoisolation achieved by conformally encapsulating the donor T cells within a biocompatible and biodegradable porous film (∼450 nm in thickness) of chitosan and alginate could attenuate GVHD without compromising GVL. The nanoencapsulation was found not to affect the phenotype of T cells in vitro in terms of size, viability, proliferation, cytokine secretion, and cytotoxicity against tumor cells. Moreover, the porous nature of the nanoscale film allowed the encapsulated T cells to communicate with their environment, as evidenced by their intact capability of binding to antibodies. Lethally irradiated mice transplanted with bone marrow cells (BMCs) and the conformally encapsulated allogeneic T cells exhibited significantly improved survival and reduced GVHD together with minimal liver damage and enhanced engraftment of donor BMCs, compared to the transplantation of BMCs and non-encapsulated allogeneic T cells. Moreover, the conformal nanoencapsulation did not compromise the GVL effect of the donor T cells. These data show that conformal nanoencapsulation of T cells within biocompatible and biodegradable nanoscale porous materials is a potentially safe and effective approach to improve allogeneic HSC transplantation for treating hematological malignancies and possibly other diseases.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.