Abstract

The M24 high-order finite-difference time-domain (FDTD) algorithm was upgraded to directly model irregularly shaped and perfectly conducting objects using locally conformed extended-stencil cells. This upgrade eliminates the need for hybrid M24/FDTD regions around perfect conductors and the consequent cross-algorithm numerical reflections. The recently developed simplified conformal approach, which affects cell conformity through exclusively adjusting its edge lengths, was used and judiciously applied to all three contours of the M24 update equation. This approach ensures stable numerical simulations at maximum time steps for any partial cell fill factor. Numerical experiments further demonstrated that this easy-to-implement approach matches the geometric accuracy of the standard FDTD method while preserving the excellent high phase coherence advantage of the M24 algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.