Abstract

The conformal transformation of the Misner–Sharp mass is reexamined. It has recently been found that this mass does not transform like usual masses do under conformal mappings of spacetime. We show that when it comes to conformal transformations, the widely used geometric definition of the Misner–Sharp mass is fundamentally different from the original conception of the latter. Indeed, when working within the full hydrodynamic setup that gave rise to that mass, i.e. the physics of gravitational collapse, the familiar conformal transformation of a usual mass is recovered. The case of scalar–tensor theories of gravity is also examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.