Abstract

We investigate the conformal invariance of massless Duffin–Kemmer–Petiau theory coupled to Riemannian spacetimes. We show that, as usual, in the minimal coupling procedure only the spin 1 sector of the theory—which corresponds to the electromagnetic field—is conformally invariant. We also show that the conformal invariance of the spin 0 sector can be naturally achieved by introducing a compensating term in the Lagrangian. Such a procedure—besides not modifying the spin 1 sector—leads to the well-known conformal coupling between the scalar curvature and the massless Klein–Gordon–Fock field. Going beyond the Riemannian spacetimes, we briefly discuss the effects of a nonvanishing torsion in the scalar case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.