Abstract
We generalize universal relations between the multifractal exponent \alpha_0 for the scaling of the typical wave function magnitude at a (Anderson) localization-delocalization transition in two dimensions and the corresponding critical finite size scaling (FSS) amplitude \Lambda_c of the typical localization length in quasi-one-dimensional (Q1D) geometry: (i) When open boundary conditions are imposed in the transverse direction of Q1D samples (strip geometry), we show that the corresponding critical FSS amplitude \Lambda_c^o is universally related to the boundary multifractal exponent \alpha_0^s for the typical wave function amplitude along a straight boundary (surface). (ii) We further propose a generalization of these universal relations to those symmetry classes whose density of states vanishes at the transition. (iii) We verify our generalized relations [Eqs. (6) and (7)] numerically for the following four types of two-dimensional Anderson transitions: (a) the metal-to-(ordinary insulator) transition in the spin-orbit (symplectic) symmetry class, (b) the metal-to-(Z_2 topological insulator) transition which is also in the spin-orbit (symplectic) class, (c) the integer quantum Hall plateau transition, and (d) the spin quantum Hall plateau transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.