Abstract

In the context of localization and sensing within the Internet of Things, new antenna manufacturing technologies, such as antennas printed with conductive inks on thin thermoplastic sheets, allow for seamless integration into plastic objects produced by an injection molding process. In this paper, we present printed sensor antennas for the [862–928] MHz band supporting LoRa and Sigfox and the [2.4–2.5] GHz band for WiFi, Bluetooth, and IEEE802.15.4 communication. To integrate them into smart suitcases, the antennas are printed, overmolded, tested, and measured, following a dedicated conformal integration strategy consisting of two design iterations. Additionally, as a more convenient connection to the printed antennas, printed transmission lines along with a dedicated transition to printed circuit board technologies are implemented and characterized, avoiding rigid coaxial connectors that exhibit fragile mounting on flexible substrates. The overmolded stand-alone antennas achieve fractional impedance bandwidths of 26% and 15% covering the [862–928] MHz and [2.4–2.5] GHz bands, respectively, with a substantial margin and with in-band simulated total efficiencies of 94% and 88%, respectively. Finally, the seamless integration of two antennas into a smart suitcase for tracing via Sigfox and WiFi demonstrates the potential of the proposed technique to realize high-performance antennas occupying virtually no real estate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call