Abstract

We examine two-dimensional conformal field theories (CFTs) at central charge c=0. These arise typically in the description of critical systems with quenched disorder, but also in other contexts including dilute self-avoiding polymers and percolation. We show that such CFTs must in general possess, in addition to their stress energy tensor T(z), an extra field whose holomorphic part, t(z), has conformal weight two. The singular part of the Operator Product Expansion (OPE) between T(z) and t(z) is uniquely fixed up to a single number b, defining a new `anomaly' which is a characteristic of any c=0 CFT, and which may be used to distinguish between different such CFTs. The extra field t(z) is not primary (unless b=0), and is a so-called `logarithmic operator' except in special cases which include affine (Kac-Moody) Lie-super current algebras. The number b controls the question of whether Virasoro null-vectors arising at certain conformal weights contained in the c=0 Kac table may be set to zero or not, in these nonunitary theories. This has, in the familiar manner, implications on the existence of differential equations satisfied by conformal blocks involving primary operators with Kac-table dimensions. It is shown that c=0 theories where t(z) is logarithmic, contain, besides T and t, additional fields with conformal weight two. If the latter are a fermionic pair, the OPEs between the holomorphic parts of all these conformal weight-two operators are automatically covariant under a global U(1|1) supersymmetry. A full extension of the Virasoro algebra by the Laurent modes of these extra conformal weight-two fields, including t(z), remains an interesting question for future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.